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Abstract

 Purpose—Causal effects in epidemiology are almost invariably studied by considering disease 

incidence even when prevalence data are used to estimate the causal effect. For example, if certain 

conditions are met, a prevalence odds ratio can provide a valid estimate of an incidence rate ratio. 

Our purpose and main result are conditions that assure causal effects on prevalence can be 

estimated in cross-sectional studies, even when the prevalence odds ratio does not estimate 

incidence.

 Methods—Using a general causal effect definition in a multivariate counterfactual framework, 

we define causal contrasts that compare prevalences among survivors from a target population had 

all been exposed at baseline with that prevalence had all been unexposed. Although prevalence is a 

measure reflecting a moment in time, we consider the time sequence to study causal effects.

 Results—Effects defined using a contrast of counterfactual prevalences can be estimated in an 

experiment and, with conditions provided, in cross-sectional studies. Proper interpretation of the 

effect includes recognition that the target is the baseline population, defined at the age or time of 

exposure.

 Conclusions—Prevalences are widely reported, readily available measures for assessing 

disabilities and disease burden. Effects on prevalence are estimable in cross-sectional studies but 

only if appropriate conditions hold.
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 Introduction

A now-common way to define causal effects in epidemiology uses a counterfactual 

framework [1–5]. Expanding on this approach, Flanders and Klein [6] presented a general 

definition of causal effects as a contrast of parameters of the distribution of multivariate 

counterfactual outcomes for the same population under two exposure conditions.

This general approach shows that causal effects can be defined using contrasts of 

prevalences [6,7]. Nevertheless, prevalences are infrequently used to define or estimate 

effects. For example in cross-sectional studies, prevalence odds ratios are often not viewed 

as causal measures unless they are a proxy for an incidence rate ratio [8–10]. Grabovschi et 

al. [11] seemingly echo this view, stating “The reviewed research studies also have some 

important methodological limitations related mostly to their reliance on survey data, which 

could preclude causal interpretation and only measure statistical associations and 

tendencies.”

Although some have defined [6] and others estimated [7] causal effects using prevalence 

contrasts, the conditions needed for valid estimation in cross-sectional studies have not yet 

been discussed. Therefore, our purpose here is to discuss valid estimation of causal effects 

when interest includes disease prevalence itself rather than just disease occurrence. We 

review the definition of a causal prevalence difference, provide examples, and discuss 

interpretation. Our main, new, and novel results are the presentation and discussion of 

assumptions that, when true, assure that causal effects on prevalence can be validly 

estimated in cross-sectional studies.

 Notation and definitions

We assume exposure (E) is dichotomous and occurs at an early age ao, if at all. Disease (D) 

can occur at any age, can resolve, in which case we say D is not present, and can recur in 

people in whom it had resolved.

 Notation

The outcome-vector [Di,a, Si,a] encodes disease status and survival: disease component Di,a 

is 1 if individual i is alive with disease and 0 otherwise and survival component Si,a is 1 if 

individual i is alive and 0 otherwise, both at age a. Ei is 1 if individual i was exposed at age 

ao and 0 otherwise. Parentheses denote counterfactual outcomes [1,12]: the vector [Di,a
(e), 

S
i,a

(e)] is the value of [Di,a
, S

i,a] if Ei had been set to e at age ao, for e = 0,1. In particular, 

disease component Di,a
(e) is 0 if individual i would have died before age a after setting Ei

 to 

e, but other definitions are possible [6,13,14].

Because an individual cannot have been both exposed and unexposed at age ao, one of the 

outcome vectors [Di,a(1), Si,a(1)] or [Di,a(0), Si,a(0)] is counterfactual.

 Definitions

Clear effect definitions require several components [2,6,15–17], including specification of 

the target; relevant ages including those when exposure is to be set and the outcome 
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measured (e.g., follow-up periods); how the exposure will be set to the levels considered; 

and the contrast (e.g., difference or ratio).

Assuming these components are specified, the effect of E on presence of D at age a for 

individual i can be defined as Di,a(1) − Di,a(0), Table 1. Because D encodes being alive with 

disease at age a, this effect is on the joint (composite) outcome having disease and being 

alive. Possible values are −1, 0, and +1. For example, −1 corresponds to being alive with 

disease presence D at age a if unexposed and either not having disease or not being alive if 

exposed. This definition differs from the typical one wherein those dying without disease are 

treated as incomplete observations; however, it is akin to the approach of Fine and Grey [18] 

wherein those dying without disease are treated as nondiseased, complete observations. 

Disease could potentially have changed several times between exposure at age ao and age a; 

focusing on age a summarizes net changes. The effect of exposure can depend on disease 

status at age ao.

To define a population average effect of E on disease presence at age a, we must specify the 

target population (P0) at age a0 when exposure is set. Then, we define the causal prevalence 

difference (cPD) at age a for P0 as the prevalence in P0 if all had been exposed at age a0, 

compared with that prevalence if all had been unexposed. In equation form, cPD is

(1)

The vectors [∑i∈P0 Di,a (e), ∑i∈P0 Si,a (e), e = 0, 1] whose components appear in Equation 1 

are parameters (means) of the distributions of counterfactual outcome vectors. If exposure 

affects survival, that would be part of the causal pathway and reflected in cPD. Importantly, 

the target is P0, not the subpopulation that survives to age a.

Of note, Flanders and Klein [6] previously defined causal effects using prevalence ratios 

rather than differences. Then, the target population was Pf, the full population at baseline. 

Now the target population (P0) coincides with Pf, provided the survey population P1 consists 

of all survivors from Pf. Thus, apart from changing from ratios to differences, the previous 

[6] and present definitions essentially coincide.

 Estimation

A natural estimator of the population average causal effect of E on presence of D in 

population P0 is the observed difference:

(2)

where an overbar indicates the average; D̅
j,a1 = ∑i∈P0: Ei = jDi,a1/Nj,a1 = ∑i∈P0:Ei=jDi,a1/

∑i∈P0:Ei=jSi,a1 is the observed prevalence of D at age a = a1 in exposure group j (j = 1 if 

exposed, 0 otherwise); and Nj,a1 is the observed number alive with exposure equal to j at age 

a1.
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In results, we present assumptions that suffice for this estimator to be unbiased in cross-

sectional studies; in Appendix 1, we justify this claim, and in Appendix 2, we discuss why 

the estimator is unaffected by collider bias from conditioning on survival.

Of note, this estimator is simple and involves directly observable variables. As in the 

definition, deaths including those from “competing risks” are treated realistically, as part of 

the causal process affecting disease prevalence.

 Results

Our goal and main novel result is to state assumptions sufficient for expression [2] to be a 

valid estimator of causal prevalence differences in cross-sectional surveys. We first motivate 

the approach by briefly considering experiments.

 Randomized experiments

The effects of exposure on disease presence at a specified time after exposure can be 

estimated in an experiment. Briefly, one identifies and enrolls subjects, say at age a0. For 

simplicity, we focus throughout on a specific age at exposure (a0), although one could 

include different age groups and calculate a summary measure or model age patterns. We 

may optionally measure baseline presence of disease (age a0) and then expose a random 

subgroup to E or placebo. We follow the cohort to age a1 and measure disease presence, 

assuming no dropouts or loss to follow-up.

Sufficient conditions under which estimator 2 validly estimates causal effects in randomized 

experiments are exchangeability (Table 1) for disease presence and survival [Di,a(e), Si,a(e)]; 

independence between people (stable unit treatment value assumption, SUTVA [19,20]); and 

counterfactual model consistency [4] (Table 1; e.g., Di,a(j) = Di,a, if Ei = j). The target is the 

baseline cohort, and all subjects remain under observation, unless death intervenes. These 

assumptions describe good randomization (exchangeability), no intersubject interference 

(SUTVA), complete follow-up, and conceptual clarity (consistency), respectively. They 

should hold in a well-conducted experiment, possibly apart from SUTVA which can depend 

on characteristics of the exposure and outcome. Example 1 illustrates how causal effects 

might be estimated using prevalence contrasts. Additional examples are provided by 

community intervention trials, often randomized, that frequently use prevalence contrasts to 

estimate causal effects [21]. Cohort studies involve similar assumptions, with the important 

caveat that, absent randomization, exchangeability is not necessarily expected (see Appendix 

1).

Exchangeability need hold only conditional on measured baseline covariates (C; Table 1). 

Moreover, the target need not be disease free (at baseline). However, the assumption of 

exchangeability for nonrandomized studies could be implausible if the prevalence at baseline 

differed by exposure as noted in the discussion.

 Example 1

We illustrate estimation of effects on prevalence in an experiment. Kuller et al. [22] studied 

the effect of a healthy lifestyle intervention on women’s low-density lipoprotein (LDL) 
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cholesterol. Women had similar cholesterol levels at baseline, but 4.5 years after 

randomization, 27% of the women in the lifestyle intervention group had LDL cholesterol 

<100 mg/dL (“optimal”) compared with 16% in the assessment only group. Many measures 

and comparisons were additionally reported (e.g., average between-group differences), but 

results included these prevalences illustrating that prevalences can be relevant and 

informative.

From their results, the prevalence difference is 27% − 16% = 9%. This contrast is not only 

descriptive, but with our assumptions that should often be plausible in a randomized 

experiment (previously mentioned), can also be interpreted as estimating the causal effect of 

the intervention on prevalence of optimal LDL cholesterol. Because prevalence reflects both 

incidence and duration after onset [23], effect can be on both—as summarized in the 

prevalence difference. Follow-up was high (95%) with one death, but if the intervention had 

affected mortality, then  would nevertheless estimate the causal effect on prevalence in 

the randomization cohort, measured in survivors.

 Cross-sectional studies

The assumptions that assure unbiasedness of estimator 2 are less straightforward in a cross-

sectional survey. We assume that survey participants are randomly selected from a well-

defined population of living people P1 at age a1 (no surrogates for the deceased). The 

presence (or absence) of disease at age a1 (Di,a1) and prior exposure at age a0 < a1 are 

accurately assessed.

Perhaps the main challenge is defining the target population needed to clearly define causal 

effects and for which a survey of population P1 is expected to yield valid estimates of causal 

prevalence differences. Because effects require time to occur, the target must have been 

enumerable at age a0 before measuring the outcome. We can clearly specify the target if 

population P1 consists of all survivors from a larger population P0 that was alive at the time 

of potential exposure, age a0. Population P0 should be definable by observable, 

contemporaneous factors. If we can specify P0, then measurement of disease prevalence in 

the survey provides just the information needed to estimate cPD and had a cohort study of P0 

been done. In particular, summation over i ∈ P0 appearing in estimator 2 can be replaced by 

summation over i ∈ P1 because summands Di,a1 and Si,a1 are 0 for individuals who die 

between age a0 and a1. If the survey involves a 100% sample, prevalences in the sample 

coincide with those from a cohort study of P0, and if less than 100%, prevalences are valid 

estimators of them because we assume exposure-specific prevalences in survey participants 

represent those in P1 (Appendix 1).

The other assumptions needed for unbiased estimation coincide with those for experiments 

and cohort studies. Specifically, we need exchangeability for target population P0 (Table 1; 

Di,a1 (e)∐Ei and Si,a1 (e)∐Ei for i ∈ P0 and SUTVA). These assumptions mean that 

comparison of disease status among exposed and unexposed survivors informs what would 

have happened if exposure had been randomized in population P0 at age a0 and the cohort 

followed to age a1.
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Some examples may help illustrate conceptualization of population P0 (Table 2). Suppose 

survey respondents, perhaps like respondents to the National Health and Nutrition 

Examination Survey or Behavioral Risk Factor Surveillance System, are representative of all 

(noninstitutionalized) U.S. residents, say at age a1, and that we focus on exposure at age a0. 

We exclude recent immigrants from P1 because they were not in the resident population at 

younger ages. Population P0 is then the population of residents at the younger age a0, a1 − a0 

years earlier. P1 should be (or represent) all in P0 who survive to a1. Emigration from P0 is 

permissible if independent of disease, survival, and exposure.

Figure 1 summarizes causal relationships that, if correct, assure the needed exchangeability 

assumptions for target population P0 and representativeness of the surveyed population (P1) 

using a directed acyclic graph (DAG). Rules for constructing and interpreting DAGs are 

reviewed in detail elsewhere [24–26]. The DAG shows that exposure E is (being assumed) 

independent of other causes of disease , and of other causes (U0) of disease and survival 

(S1). Membership in P1 depends on survival, not emigrating and other factors, but not 

directly on E. Participation depends on P1, other factors U1, but not directly on E. Under 

these causal patterns relationships, we expect exchangeability for target population P0 and 

representativeness survey population P1. Figure 2 illustrates situations wherein additional 

causal effects are present (dotted line) with both S1 and D1 affecting membership in P1. We 

now expect bias as survey population P1 may not represent all survivors from target 

population P0.

If the exposure-specific prevalences in survey participants do “not” represent those in P1 

(i.e., all P0-survivors), estimator [2] is likely biased. In this case, however, prevalent disease 

should be associated with survey participation, or with emigration or loss from the surviving 

population suggesting a common cause (e.g., C0 in Fig. 3). If we can control for all such 

common causes, prevalent disease should then be independent of participation, emigration, 

and loss (assuming no conditioning on a collider), exposure-specific prevalences in 

participants should consistently estimate those in survivors, and the conditional estimator 

should be consistent for the effect in [1].

 Example 2

Example 2 illustrates the use of prevalence contrasts for estimating effects in a survey 

(cross-sectional study). Our goal is to estimate the effect of starting smoking at age 18 years 

versus never starting or starting later on the prevalence of poor or fair health 20 years later at 

age 38 years. Self-rated health status is of interest partly because it consistently and strongly 

predicts subsequent mortality, even after control for multiple other health-status indicators 

[27]. To estimate this effect, we use data from the National Health and Nutrition 

Examination Survey for the years 2007–2010. To increase sample size, we include 

respondents 35–39 years old when surveyed (instead of just 38 years). The exposed group is 

smokers who started regular smoking between ages 18 and 21 years, using a wider age 

interval to increase sample size, and the unexposed are all who never started or started after 

age 21 years. The outcome is self-reported poor or fair health at interview (age, 35–39 

years). After adjusting for gender and race, the prevalence odds ratio was 1.7, indicating a 
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70% estimated higher prevalence odds of poorer health among those who started regular 

smoking at ages 18–21 years, compared with never or later starting smokers.

The baseline population P0 consisted of U.S. residents who were 18–21 years old about 20 

years before interview. If the exposed and unexposed were exchangeable conditional on 

controlled covariates, and participants were representative of all U.S. residents aged 38 ± 2 

years during this time period—the prevalence odds ratio should consistently estimate the 

effect of taking up regular smoking at about age 18 years on having self-reported poor health 

20 years later. Some U.S. residents died between ages 18 and 38 years possibly because of 

smoking. Because our interest is in the effect of smoking on prevalence, these deaths do not 

represent bias because of competing risks but rather are part of the defined effect of smoking 

[6] on subsequent disease prevalence among survivors.

 Discussion

When epidemiologists consider disease causation they almost invariably consider it in terms 

of disease onset (i.e., incidence). Rothman et al. developed causal concepts as follows ([5], 

p.6): “To begin, we need to define cause. One definition is the cause of a specific disease 

occurrence is an antecedent event, condition, or characteristic that was necessary for the 

occurrence of the disease at the moment it occurred, given that other conditions are fixed.” 

Although their interest in that definition is on disease onset, for effects on disease 

prevalence, we can similarly consider an antecedent event, condition, or characteristic that 

was necessary for an individual having disease at a particular point in time, given that other 

conditions are fixed. Effects on survival, disease onset, or disease duration in this context are 

part of the causal pathway.

A cohort study is often viewed as a natural design to estimate disease incidence, and a cross-

sectional study as a natural design to estimate prevalence as prevalence is a measure 

reflecting a moment in time. However, to study causal effects, the time sequence must be 

considered. So, to study causal effects on prevalence, a cohort study would be a natural 

design. Our assumptions provide conditions wherein observations from a cross-sectional 

study provide information that adequately approximates information from a cohort study for 

estimating effects on prevalence.

We have defined causal contrasts that compare the prevalence among survivors from the 

target population had all in the target been exposed at baseline with that prevalence had they 

been unexposed. The definition requires specification of the target population, exposure, 

ages, and other factors [2,6,28]. The assumptions needed for valid estimation are strong and 

require critical review to assess their validity. Each of these issues merits separate 

discussion.

A key assumption is that the baseline, target population be clearly defined and potentially 

enumerable. Although explicitly defined in experiments and cohort studies, in cross-

sectional studies, this baseline population may require conceptualization as an earlier 

“parent” population defined so that the population surveyed would consist of all (represent) 

survivors from the parent population. Identification of a parent population with the needed 
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characteristics creates a situation wherein observations from a cross-sectional study can 

reproduce those that would have been obtained if a cohort study of that population had been 

done. Many surveys will not permit clear delineation of the parent population; if not, 

associated causal-effect definitions may be unsatisfactory. Other assumptions for validity of 

the observed PD as an estimator of the causal PD in cross-sectional studies are equally 

important. In particular, exchangeability must be evaluated and, as in cohort studies, can be 

suspect. It is not expected to hold if confounding is present, perhaps due to causes of disease 

that are also associated with exposure. If the target is not disease free at baseline, 

exchangeability can also be suspect if the prevalence at baseline differs between the exposed 

and unexposed subgroups. In cross-sectional studies involving prevalence contrasts, 

exchangeability can be threatened by factors that affect either disease duration or risk and 

are associated with exposure. As with other observational studies, some assumptions are 

unverifiable, and sensitivity analyses may be useful.

The ages at exposure and at disease measurement must be clearly specified. These ages are 

critical for several reasons. First, age is a potential confounder, for example, if it affected 

prevalence and was associated with exposure. Second, age at exposure could be an effect 

measure modifier. Third, the age and time intervals between exposure (or nonexposure) and 

outcome measurement can also affect prevalence.

Ideally, exposure would have occurred, if at all, at age a0, the age of the target population at 

baseline, analogous to recommendations that follow-up in cohort studies begins at or before 

exposure [29–31]. To illustrate how we might define exposure and the target in practice, 

suppose our goal is to estimate the effect of hormone replacement therapy (HRT) on 

cardiovascular disease (CVD) prevalence. A population-based survey of 60 year olds is 

available that included questions about age at starting HRT. We could define “exposure” as 

having started HRT by a specific age, say 50 years (10 years before the survey) and 

“nonexposure” as not having started by that age (including never starting). P0 should consist 

of people who were 50 years old 10 years before the survey and should be defined so that P1 

consists of all survivors from P0. P0 may be easier to define if the survey is population-based 

(e.g., all 60-year-old, U.S. residents in 2010 excluding recent immigrants), so that it might 

be defined as the corresponding population, 10 years earlier (e.g., all 50-year-old, U.S. 

residents in 2000). See Appendix 2 for additional discussion. If the timing and ages are not 

specified, then the effect may not be clearly defined, and confusion can ensue. Importantly, 

similar issues can arise in cohort studies. A possible example concerns side effects of HRT, 

thought by many to be protective for CVD. After randomized trials showed HRT to increase 

rather than decrease CVD risk, reanalyses of one observational study suggested that better 

control for time since initiation and confounding could lead to better agreement with the 

randomized trial. Thus, clear specification of age at, and time since, exposure are important 

in cohort as well as cross-sectional studies [29,31] with exposure, if it occurs, being at or 

around the start of follow-up. Here, we restrict to specific ages for simplicity, but a stratified 

approach with calculation of summary measures or model-based estimation would directly 

extend our results.

A comparison of prevalences may seem wanting as a causal measure because prevalence is 

affected by disease incidence and duration (see Appendix 2) [23]. A harmful exposure could 
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increase the prevalence by increasing the rate of disease onset or decrease the prevalence by 

increasing the case fatality rate. Because the causal prevalence difference is a summary 

effect, use of additional contrasts such as differences in risk or duration can be helpful, 

sometimes vital. Nevertheless, prevalence itself is a widely reported and readily available 

epidemiologic measure for assessing disabilities, disease burden, and frequency, particularly 

for chronic, incurable diseases with long duration and unclear timing of onset [23]. Causal 

inference from prevalence has usually been considered as a proxy for incidence. Our 

purpose here and main novel result is to provide conditions for validly estimating causal 

effects in cross-sectional studies. However, we also discuss interpretation and related 

conceptual issues as the use of prevalence contrasts for defining and estimating causal 

effects is uncommon and involves relatively new considerations.
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 Appendix 1

 Experiments

We argue that the estimator (expression 2) is unbiased under our assumptions for 

experiments. By completeness of follow-up, Nj,a1 = ∑i∈P0:Ei=jSi,a1 for j = 0 or 1, where 

Si,a1=1 if subject i is alive at age a1 and 0 otherwise. By counterfactual model consistency 

for both Di,a1(e) and Si,a1 (e), ∑i∈P0:Ei=jDi,a1/∑i∈P0:Ei=jSi,a1 = ∑i∈P0:Ei=jDi,a1 (j)/
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∑i∈P0:Ei=jSi,a1 (j). By exchangeability, E[∑i∈P0:Ei=jDi,a1 (j)]/E[∑i∈P0:Ei=jSi,a1 (j)] = ∑i∈P0Di,a1 
(j)/∑i∈P0Si,a1 (j). Slutsky’s theorem [32] now implies that expression [2] is unbiased 

(technically, consistent) for the causal effect (Equation 1).

 Cohort studies

To estimate the cPD in a cohort study, we select a cohort P0, some of whom were exposed at 

baseline (age a0), others not. The assumptions needed for unbiasedness of estimator 2 are the 

same as those for an experiment. However, exchangeability, which should hold in an 

experiment with good randomization, needs to be critically evaluated. In particular, we must 

verify that collider bias [4,5,33,34], if any, induced by cohort selection at baseline is 

negligible. We follow the cohort to age a1 and assess disease presence.

Our claim, that estimator [2] is unbiased given our assumptions, follows from the preceding 

arguments as the design and assumptions closely parallel those for an experiment. The key 

difference for cohort studies is that the assumption of exchangeability is not expected to hold 

by design, at least absent restriction, stratification or adjustment, and must be evaluated with 

particular care using all available information.

 Cross-sectional studies

Finally, we argue that estimator 2 is consistent under our assumptions for cross-sectional 

studies. By assumption, the sample is representative of population P1, so 

, where the summation is over 

subjects in population P1. Also, by assumption, a larger, enumerable population P0 exists 

such that P1 consists of all surviving members of P0. Because Di,a and Si,a are both 0 for the 

deceased, we have in expectation, 

.

This last expression is the same as estimator 2 for the target cohort P0 if it was the baseline 

population in a cohort study followed from age a0 to age a1. But estimator 2 is unbiased by 

our assumptions and arguments mentioned previously for the cohort P0.

At times, an alternative estimator that accounts for baseline prevalence may be unbiased 

even if estimator 2 is biased.

(3)

For example, the prevalence at baseline may differ between exposed and unexposed because 

of factors associated with exposure but unassociated with changes in disease thereafter. 

Measurement error can affect the decision to further account or adjust for baseline disease 

status as discussed by Glymour et al. [35].

Flanders et al. Page 11

Ann Epidemiol. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



 Appendix 2

 Alternative approach to defining prevalence effects

Here we consider an approach to defining prevalence effects that provides more details, still 

rooted in the general causal-effect definition which contrasts parameters of the multivariate 

counterfactual-outcome distributions presented by Flanders and Klein [1]. The idea is to 

separate and incorporate the three components of prevalence: disease onset, disease duration, 

and survival. Di,a defined in the main text can be viewed as an infinite-dimensional vector, 

Di that traces the disease and survival status of individual i over each moment of the period 

of interest. The ath component of Di = Di,a encodes disease presence, as defined in the main 

text, for each age a ≥ 0. Similarly, the ath components of Di(e), Si(e) and Si are Di,a(e), Si,a(e) 

and Si,a respectively. Using Di(e), a matrix of counterfactual outcomes consisting of three 

vectors can be derived:

where ti,k(e) represents the time from baseline (time 0 or age a0) to the kth disease episode of 

subject i, and ni(e) is the total number of his/her episodes during the observation period, if Ei 

were set to e at baseline. If subject i has disease at baseline then ti, 1(e) is zero. ui,k(e) 

represents the duration of the kth episode of subject i, if Ei were e. If subject i has disease at 

baseline then ui, 1(e) is the duration of the first episode from baseline.  represents 

survival time from baseline. The superscript δ (in  and  is 1 if 

information is censored and 0 otherwise.

This formulation includes details about disease onset and duration for potentially multiple 

disease episodes over time. With it, causal effects of exposure on prevalence can be traced 

over time since baseline. Additionally, this information allows consideration of the causal 

effect of exposure on disease onset, survival, cumulative disease duration, average duration 

per episode, proportion of time with the disease or condition and the number of episodes.

 Comparison of causal prevalence differences (Equation 1) with causal conditional risk 
differences

One of the examples used by Flanders and Klein to illustrate their general, multivariate 

definition of causal effects was the causal conditional risk difference (cCRD) [1]. Here we 

compare the cCRD with the causal Prevalence Difference (cPD) given by Equation (1). The 
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cCRD for the risk of an outcome during a risk period for the target P0, conditional on 

survival to age a, can be defined for the target P0 by:

(1A)

where Ii,a(e) is 1 if the outcome of interest occurs between age a and before the end of the 

risk period and as 0 otherwise. This expression is like Expression 1 of the main text, but 

Ii,a(e) replaces Di,a(e) and is defined differently. The definition of cPD is similar, but 

involves presence of disease at age a (reflected in Di,a(e)), rather than occurrence of disease 

in the risk period starting at age a (reflected in Ii,a(e)).

 The causal prevalence difference estimator (expression 2) and potential collider bias

Since the denominator of Estimator 2 equals the number in the baseline population (target 

P0) who survive to age a1, one could, and a reviewer did, ask if the estimator in Equation 2 

might be affected by collider bias due to conditioning on survival to age a1. A theoretical 

justification that the estimator in Equation 2 is consistent is outlined in Appendix 1. Here, 

we provide alternative, less technical arguments. (Briefly, that justification uses the 

assumptions in the main text including exchangeability in the target P0 and SUTVA to show 

that (∑i∈P0:Ei=e Di,a/Np0,e, ∑i∈P0:Ei=eSi,a/Np0,e) is an unbiased estimator of the population-

average, multivariate effect of E on outcome vector (Di, Si), where Np0,e is the number in P0 

with E = e. Slutsky’s theorem then shows consistency for the ratio contrasts–the prevalence 

difference.) Collider bias for one target (e.g., P1) but not another (e.g. P0), is also discussed 

elsewhere [1].

First, we emphasize that the target population is selected at baseline (time 0), and the 

exposure is independent of risk factors for disease and survival in this population 

(exchangeability assumption, perhaps conditional on common causes). Thus, selection 

(collider bias) from selection of the target is not an issue, by assumption. Furthermore, the 

final estimator (equation 2) is merely an algebraic manipulation of the multivariate estimator 

(∑i∈P0:Ei=e Di,a/Np0,e, ∑i∈P0:Ei=eSi,a/Np0,e). But this multivariate estimator involves no 

exclusions, stratification, or control (except for stratification by exposure which is 

exchangeable), and so involves no collider bias.

Second, we note reassuringly that the cPD (equation 1) is directly estimable in a well-

conducted experiment (using estimator 2), in which exposure is randomized at baseline in 

the target P0. The causal prevalence difference addresses the question – “What is the 

population average effect of exposure on the target population, as measured by disease 

prevalences at age a1?” Of course other question can and typically should be asked, such as, 

“What is the population average effect of exposure on the target population, as measured by 

survival at age a1?” or “What is the population average effect of exposure on the target 

population, as measured by disease incidence through age a1?” Although other questions 

exist, by randomizing exposure at baseline, following the exposed and unexposed groups to 

age a1, and then accurately measuring disease presence and contrasting the prevalences, one 

Flanders et al. Page 13

Ann Epidemiol. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



can consistently estimate the effect of exposure on prevalence (via estimator 2). Thus, the 

defined effect (expression 1) is directly observable using simple, well-defined procedures 

that end by using estimator 2 in a randomized experiment.

Third, we note that effects of exposure, if any, on death before age a1, are part of the defined 

effect on prevalence (Expression 1), and appropriately reflected in defining the effect and 

calculating the measure that estimates it. For example, one way in which exposure could 

cause a reduction in disease prevalence at age a1 would be to differentially reduce survival 

among those who had developed disease. Such a prevalence reduction would be an expected 

part of an effect on prevalence and correctly estimated, in a randomized experiment or other 

study under our assumptions. Through use of multivariate outcomes and effects, as described 

above, a more complete characterization of the exposure’s impacts can be obtained.

 Supplemental Example 1

Supplemental example 1 illustrates use of prevalence contrasts for estimating effects in a 

cohort study. To estimate effects of early-life factors on sedentary lifestyle in adolescents, 

Hallal et al. [2] conducted a cohort study of all children born in-hospital, during 1993 in 

Pelotas, Brazil. They found a sedentary-lifestyle prevalence of 53.5% among 10–12 year 

olds whose mother had low education, compared to 63.2% among those whose mother had 

high education. The prevalence difference (9.7%), if exchangeability and our other 

assumptions are adequately approximated, is interpretable as the effect of maternal 

education on prevalence of sedentary lifestyle in adolescents and illustrates use and 

estimation of prevalence contrasts in a cohort study.

 Additional considerations in defining exposures for potentially-ongoing exposures

To further illustrate issues that can arise in defining exposure contrasts and the target P0, 

consider the effects of starting alcohol use at a young age, say age 15, on prevalence of 

hepatic disease at age 35. We might define exposure as having started regular heavy alcohol 

use by age 15, and for comparison an “unexposed” group as those who had not started 

regular, heavy drinking by age 15. The resulting contrast, just as it would be in a cohort 

study, actually compares the effect of starting alcohol use early (age 15) versus later or 

never. The presence of people who later became a regular heavy drinker would, just as in a 

cohort study, reduce the expected effects of heavy drinking–compared to a completely 

unexposed population of, say, never drinkers. But, even in a cohort study–accounting for 

changes in exposure might require G-computation or related method [3] – if those changes 

reflect time-varying confounding. If a population-based survey of 35 year olds is available, 

P0 should be defined, if possible, as those who were 15 years old about 20 years before the 

survey, in a way that the survey population represents all survivors from P0.
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Fig. 1. 
The figure summarizes causal relationships using a DAG for the baseline population P0. If 

correct, estimator 2 should be unbiased (see text). D1 represents disease presence at age a1, 

 other causes of disease, U0 other causes of survival (S1), and disease (D1). P1 is the 

survey population; membership depends deterministically on survival, and not emigrating or 

other loss, but not directly on exposure E or D1. Participation depends on P1 and other 

factors U1. †Emigration, other factors affect being in population P1.
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Fig. 2. 
The figure illustrates a situation such as that in Figure 1, with an additional effect (dotted 

line) that could underlie bias in estimator 2. For example, bias is expected if S1 and D1 affect 

membership in P1 (see text). D1 represents disease presence at age a1,  other causes of 

disease, U0 other causes of survival (S1), and disease. P1 is the survey population; 

membership depends on survival, not emigrating, and D1. Participation depends on P1 and 

other factors U1. †Emigration, other factors affect being in population P1.
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Fig. 3. 
The figure illustrates a situation such as that in Figure 1, but with a common cause (C0) of 

prevalent disease D1 and emigration. Exposure-specific prevalences in the survey population 

(P1) would be expected to differ from those in all survivors, and bias is expected. 

represents other causes of disease, U0 other causes of survival (S1), and disease. P1 is the 

survey population; membership depends deterministically on survival, not emigrating or 

other loss, and D1. Participation depends on P1 and other factors U1. †Emigration, loss other 

factors affect being in population P1. ††C0 is common cause of prevalent disease and 

emigration, so prevalence in P1 expected to differ from that in all survivors.
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Table 1

Definitions and notation

Term Brief definition

[Di,a(e), Si,a(e)] counterfactual outcome vector Components are counterfactual outcomes Di,a(e), Si,a(e) defined next. [Di,a(e), Si,a(e)] = [1,1] if 
subject i is alive with
disease at age a; = [0,1] if subject i is alive without disease at age; = [0,0] if subject i is not 
alive at age a; all if
exposure had been set to e

Di,a(e)—counterfactual disease outcome First component of counterfactual-outcome vector [Di,a(e), Si,a(e)], defined previously

Si,a(e)—counterfactual survival, subject i second component of counterfactual-outcome vector [Di,a(e), Si,a(e)], defined previously

Di,a(1) − Di,a(0) Individual causal effect on disease presence at age a

cPD—causal prevalence difference Population-average effect of exposure at age a0 on disease prevalence at a, in defined target 
population (Equation 1),

Exchangeability—disease The counterfactual outcome with E set to e, is independent of actual exposure: Di,a(e)∐Ei; 
exchangeability can be
conditional on covariates C: Di,a(e)∐Ei|C

Exchangeability—survival The counterfactual outcome with E set to e, is independent of actual exposure: Si,,a(e)∐Ei; 
exchangeability can be
conditional on covariates C: Si,a(e)∐Ei|C

Consistency The observed outcome equals the counterfactual outcome if exposure were set to the actual 
exposure: Di,a(e)=Di,a
if Ei=e

Stable unit treatment value assumption The outcome of individual i is independent of the exposure status of all other individuals: 
Di,a(e)∐Ej for i ≠ j
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Table 2

Examples of surveys for which the “parent” population P0 may be specifiable*

Survey Population P1 Parent Population P0

Population-based national survey
  (e.g. NHANES 3)

U.S. residents, noninstitutionalized, age a1—excluding 
immigrants
between age a0 and a1

U.S. residents, noninstitutionalized,
age a0, (a0< a1)

Population-based statewide 
telephone
  ssurveys (e.g., BRFSS)

State residents, noninstitutionalized, age a1—excluding 
immigrants
between age a0 and a1

State residents, noninstitutionalized,
age a0, (a0< a1)

Population-based national telephone
  survey (e.g., NHIS)

U.S. residents, noninstitutionalized, age a1—excluding 
immigrants
between age a0 and a1

U.S. residents, noninstitutionalized,
age a0, (a0< a1)

BRFSS = Behavioral Risk Factor Surveillance System; NHANES = National Health and Nutrition Examination Survey; National Health Interview 
Survey (NHIS).

*
P0: as in the main text, P1 is the population (age a1) sampled for the survey, and P0 is the parent population (age a0) defined so that P1 consists 

of all surviving members of P0. To assure temporal precedence, a0 is less than a1.
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